
City of Tacoma Regional Stormwater Facility Plan: ATTACHMENT 1: FLETT CREEK WATERSHED - ADDENDUM

Gravel Pit Stormwater Regional Facility and Outlet Structure

June 2022 - Addendum

Prepared by

City of Tacoma Environmental Services Department Science and Engineering Division, Environmental Programs Group

I hereby certify that this modeling report was prepared by me and that to my belief was prepared in accordance with the requirements of 18.43 RCW. I hereby certify that I am a licensed professional engineer under the laws of the State of Washington. This report is stamped and signed in accordance with Section 196-23-020(1) of the Washington Administrative Code and Section 18.43.070 of the Revised Code of Washington.

Background:

Ordinance 28371 passed July 26, 2016. This ordinance amended Chapter 12.08 of the Tacoma Municipal Code allowing the City to implement a voluntary payment in-lieu of construction program to allow new development and redevelopment projects to pay a system development charge instead of installing individual onsite stormwater facilities for stormwater treatment and flow control mitigation.

 The City of Tacoma Regional Stormwater Facility Plan describes the program in detail including how capacity credits are calculated and requirements for an annual review.

Ordinance 28372 passed July 26, 2016. This ordinance established a system development charge for the Gravel Pit flow control facility.

- Attachment 1 of the City of Tacoma Regional Stormwater Facility Plan describes the program for the Flett Creek Watershed and describes how program capacity and cost were determined.
- Guidance from the Draft Washington State Department of Ecology's "Stormwater Control Transfer Program – Out of Basin" in conjunction with preliminary project design information was used to calculate capacity available for the program.

The City of Tacoma obtained a new NPDES Phase I Permit effective August 1, 2019. This Permit required the City of Tacoma to update its Stormwater Management Manual to be equivalent to Ecology's 2019 Stormwater Management Manual for Western Washington. Part of the process to update the City of Tacoma Stormwater Management Manual included reviewing and updating as necessary other programs/manuals related to the City of Tacoma SWMM. Because the Washington State Department of Ecology finalized the Sizing Recommendations for Regional Facilities – the calculations for Gravel Pit facility were re-run with new knowledge of final facility design.

Calculations

2016 Calculations

See City of Tacoma Regional Stormwater Facility Plan: Attachment 1: Flett Creek Watershed for complete program information. Table 1 – 2016 Program Assumptions summarizes the final system development charge, how that charge was calculated, and assumptions made in the calculations.

2022 Calculations

The Program calculations were revisited based upon updates to the 2019 Stormwater Management Manual for Western Washington and final project design. A summary of 2022 calculations and outputs is provided in the tables below. The WWHM Reports are included as Attachments to this document for reference.

2016 Compared to 2022 Calculations

The biggest difference between the 2022 calculations and the 2016 calculations is that the 2022 calculations did not assume that the Gravel Pit provides infiltration and the riser height is greater based on survey data.

The 2016 calculations included an infiltration rate of 0.1 inches/hour. This infiltration rate is based upon a Draft 2004 Technical Memorandum which summarized the results of field investigations to characterize subsurface soil conditions at the Gravel Pit and staff knowledge (correspondence with D. Deleon). The report did not specify infiltration or suggest infiltration rates that may be appropriate for facility design and appears to have been conducted to verify the viability of the using the excavated material as gravel base or other viable reuse options. Based upon the available material, it is unclear if infiltration is appropriate in this location and what an appropriate infiltration rate would be for the Gravel Pit.

Survey was completed in 2021 to verify the current outlet structure design. Calculations were updated based upon survey results.

Table 1 - 2016 Program Assumptions

Item #	Item	Value	How Determined/Calculated
1	System Development Charge	\$0.97	Capital Cost is Divided by the Net Capacity Credit Available (in square feet)
2	Net Capacity Credit Available (Acres)	68.82	Item 11 minus Item 10 (Totals)
3	Total Impervious Surface Area Available (Acres)	58.5	Item 11 minus Item 10 (Roads/Flat subcategory)
4	Total Lawn/Landscaped Area Available (acres)	10.32	Item 11 minus Item 10 (Lawn/Flat subcategory)
5	Gravel Pit Total Contribution Areas	3138.29 Acres	Basin Map created by AMG using available GIS Layers.
6	Capital Cost	\$2,867,804.99	Information Available at Time of development of Fee In-Lieu Program.
7	Existing Outlet Structure	One 4-Foot Square Orifice at 265 Feet. Controlled with Slide Gate Set at 70% Open = Equivalent Circular Orifice diameter of 45.315 Inches. Overflow is Flat Weir, 11 feet Wide at 279 Feet.	Existing Facility Design
8	Excavation Additional Live Storage Area	58 Acre-Feet	Calculated Value Based on 279 to 265 Excavation Elevation.
9	WWHM Outlet Structure Used for Program Design Capacity	Riser: Height: 14 Feet and Diameter 48" Rectangular, Notched: Height: 4 Feet and Width 0.4 Feet 3 Orifices: 3" at 0 Feet, 6" at 5 feet, and 6" at 8.9 feet.	Iteratively running WWHM to obtain a pond design that could provide flow control per the flow control standard.
10	Theoretical Basin That Can Be Controlled by Pond Before Excavation (Acres)	Roads/Flat - 292 Acres C, Lawn/Flat - 51.53 Acres Pond: 17.4 Acres Total - 360.93 Acres	Iteratively running WWHM with the following assumptions to obtain a theoretical basin that could be managed by the pond and provide flow control per flow control standard: Predeveloped: Forested 0.1 Infiltration Rate 85% Impervious Surface Coverage Pond Size: Based on Calculation of Volume for 2:1 Side Slope and Excavation Projections from Project Design (172.7360 Acre-Feet in WWHM)
11	Theoretical Basin That Can Be Controlled by Pond After Excavation (Acres)	Roads/Flat - 350.5 Acres C, Lawn/Flat - 61.853 Acres Pond: 17.4 Acres Total - 429.753 Acres	Iteratively running WWHM with the following assumptions to obtain a theoretical basin that could be managed by the pond and provide flow control per flow control standard: Predeveloped: Forested 0.1 Infiltration Rate

			85% Impervious Surface Coverage Pond Size: Based on Calculation of Volume for 2:1 Side Slope and Excavation Projections from Project Design (216.8311 Acre-Feet in WWHM)
12	Existing Pond Size	384,216 Cubic Yards	Calculated Values Based on Proposed Excavation Depth which assumed a rectangular pond with 2:1 side slopes
13	Proposed Pond Size	477,201 Cubic Yards	Calculated Value Based on 279 to 265 Excavation Elevation.

Table 2 - 2022 Program Modeling Assumptions – No Infiltration Assumed and Assuming 19' Riser

Item #	Item	Value	How Determined/Calculated
1	Gravel Pit Total Contribution Areas (Acres)	3,154.53 - Total 1,641.80 - Impervious 1,512.73 - Pervious	AMG created land use map based upon available GIS information – map developed 08/25/2021.
2	Existing Pond Size	329.0642 acre-feet.	Same pond as other 2022 calculations but used 19' riser which increases the pond size.
3	Excavated Pond Size	387.9373 acre-feet.	Used the same excavation amount as 2016 calculations which is about 58 acre-feet.
4	WWHM Outlet Structure Used for Program Design	Height: 19 Feet Diameter: 96" Orifice: 5" at 0'; 9.25" at 15', 8.5" at 16'	WWHM model run iteratively using autopond feature with varying contributing area contributions until the pond created was close to pre-expansion pond size. The pond created by auto pond was then adjusted to be buildable (Outlet structure height and diameter rounding) and adjust size to be closer to pre-expansion pond size.
5	Theoretical Contributing Area to Facility Before Expansion that Can Meet Flow Control Standard - 85% Impervious – 19' Riser (Acres)	Predeveloped: 400 - C, Forest, Flat Developed: C, Lawn, Flat: 57.741 Roads: 324.94 Pond: 15.06	WWHM model run iteratively using autopond feature with varying contributing area contributions until the pond created was close to pre-expansion pond size. The pond created by auto pond was then adjusted to be buildable (Outlet structure height and diameter rounding) and adjust size to be closer to pre-expansion pond size. This set the pre-expansion pond size and outlet structure size. Once pre-expansion pond size and outlet structure size were determined using autopond, a theoretical contributing basin was created assuming 85% impervious surface coverage that could pass the flow control standard.

6	Theoretical Contributing Area to Facility After Expansion that Can Meet Flow Control Standard - 85% Impervious – 29' Riser (Acres)	Predeveloped: 440 - C, Forest, Flat Developed: C, Lawn, Flat: 66 Roads: 356.13 Pond: 17.87	Using the same outlet structure as pond from pre-expansion pond but expanding pond to increase volume to be close to volume increased by excavation. Once the excavated pond with outlet structure were set, a theoretical contributing basin was created assuming 85% impervious surface coverage that could pass the flow control standard. Infiltration was not assumed.
7	Available to Sell - 85% Impervious – 19' Riser (Acres)	Total: 39.45 Impervious: 31.19 Lawn/Landscaped: 8.26	Item 6 minus Item 5

Table 3 – Summary Table – Program Availability

Item	2016 Calculations – Assuming 0.1 in/hr Infiltration Rate and a 14' Riser	2022 Calculations – Assuming No Infiltration and a 19' Riser
Available to	Total: 68.82	Total: 39.45
Sell – 85%	Impervious: 58.5	Impervious: 31.19
Impervious	Lawn/Landscaped:	Lawn/Landscaped:
(Acres)	10.32	8.26

Appendix A – WWHM Report – Expanded Pond – Theoretical Basin – 85% Impervious – 19' Riser

WWHM2012 PROJECT REPORT

General Model Information

Project Name: WWHM - 19' Riser

Site Name: Site Address:

City:

Report Date: 5/2/2022

Gage: 38 IN CENTRAL

 Data Start:
 10/01/1901

 Data End:
 09/30/2059

 Timestep:
 15 Minute

 Precip Scale:
 1.000

Version Date: 2021/08/19

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 400

Pervious Total 400

Impervious Land Use acre

Impervious Total 0

Basin Total 400

Element Flows To:

Surface Interflow Groundwater

WWHM - 19' Riser 5/2/2022 8:09:03 AM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Flat 57.741

Pervious Total 57.741

Impervious Land Use acre ROADS FLAT 327.199 POND 15.06

Impervious Total 342.259

Basin Total 400

Element Flows To:

Surface Interflow Groundwater

Trapezoidal Pond 1 Trapezoidal Pond 1

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1

Bottom Length: Bottom Width: 810.00 ft. 810.00 ft. Depth:

20 ft. 330.5236 acre-feet. Volume at riser head:

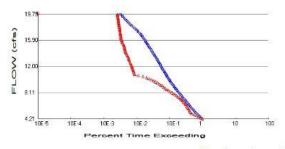
Volume at riser head Side slope 1: Side slope 2: Side slope 3: Side slope 4: Discharge Structure Riser Height: Riser Diameter: Orifice 1 Diameter: Orifice 2 Diameter: 3 To 1 3 To 1 3 To 1 3 To 1

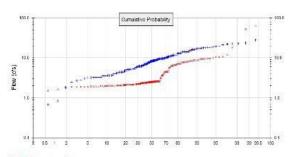
19 ft. 96 in.

5.000 in. Elevation:0 ft. 9.250 in. Elevation:15 ft. Orifice 3 Diameter: 8.500 in. Elevation:16 ft.

Element Flows To:

Outlet 1 Outlet 2


Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs	
0.0000 0.2222	15.06	0.000	0.000	0.000
0.4444	15.11 15.16	3.352 6.716	0.319 0.452	0.000
0.6667	15.21	10.09	0.553	0.000
0.8889	15.26	13.47	0.639	0.000
1.1111	15.31	16.87	0.715	0.000
1.3333	15.36	20.28	0.783	0.000
1.5556	15.41	23.70	0.846	0.000
1.7778	15.46	27.13	0.904	0.000
2.0000	15.51 15.56	30.57 34.02	0.959 1.011	0.000 0.000
2.4444	15.61	37.48	1.060	0.000
2.6667	15.66	40.96	1.107	0.000
2.8889	15.71	44.45	1.153	0.000
3.1111	15.76	47.94	1.196	0.000
3.3333	15.81	51.45	1.238	0.000
3.5556	15.86	54.97	1.279	0.000
3.7778 4.0000	15.91 15.96	58.50	1.318 1.356	0.000
4.2222	16.01	62.05 65.60	1.394	0.000
4.4444	16.07	69.17	1.430	0.000
4.6667	16.12	72.74	1.465	0.000
4.8889	16.17	76.33	1.500	0.000
5.1111	16.22	79.93	1.533	0.000
5.3333	16.27	83.54	1.566	0.000
5.5556	16.32	87.16	1.599	0.000
5.7778 6.0000	16.37 16.43	90.80 94.44	1.630 1.661	0.000
6.2222	16.48	98.10	1.692	0.000
6.4444	16.53	101.7	1.722	0.000
6.6667	16.58	105.4	1.751	0.000
6.8889	16.63	109.1	1.780	0.000
7.1111	16.69	112.8	1.809	0.000

7.3333 7.5556 7.7778 8.0000 8.2222 8.4444 8.6667 8.8889 9.1111 9.3333 9.5556 9.7778 10.000 10.222 10.444 10.667 10.889 11.111 11.333 11.556 11.778 12.000 12.222 12.444 12.667 12.889 13.111 13.333 13.556 13.778 14.000 14.222 14.444 14.667 14.889 15.111 15.333 15.556 15.778 16.000 16.222 16.444 17.333 17.556 17.778 18.000 18.222 18.444 18.667 19.889	16.74 16.79 16.84 16.90 17.05 17.05 17.16 17.27 17.32 17.42 17.37 17.42 17.59 17.69 17.75 17.85 17.96 18.02 18.13 18.29 18.34 18.45 18.56 18.62 18.73 18.84 18.89 18.89 18.95 19.06 19.17 19.29 19.45 19.57	116.5 120.2 124.0 127.7 131.5 135.3 139.1 142.8 150.5 154.3 158.2 165.9 167.5 181.5 185.4 189.3 197.2 201.2 201.2 201.2 201.2 217.3 229.4 231.6 241.6 245.7 249.9 254.0 266.5 274.8 279.0 283.3 291.2 201.2	1.837 1.864 1.892 1.918 1.945 1.997 2.022 2.047 2.072 2.097 2.121 2.145 2.192 2.215 2.283 2.306 2.328 2.350 2.371 2.445 2.456 2.477 2.518 2.558 2.578 2.558 2.578 2.578 2.598 2.617 3.411 3.997 4.406 4.742 5.035 6.848 7.827 8.635 8.999 9.344 9.672 9.986 10.257 10.86	0.000 0.000
18.000	19.34	308.8	9.672	0.000
18.222	19.40	313.1	9.986	0.000
18.444	19.45	317.4	10.28	0.000

20.222 19.91 352.4 124.8 0.000

Analysis Results

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 400 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 57.741 Total Impervious Area: 342.259

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 8.429116

 5 year
 13.113231

 10 year
 15.658388

 25 year
 18.248905

 50 year
 19.788639

 100 year
 21.054751

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 3.122763

 5 year
 5.813687

 10 year
 8.554063

 25 year
 13.55768

 50 year
 18.764943

 100 year
 25.615809

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigate
1902	6.182	2.341
1903	5.142	2.039
1904	8.410	2.344
1905	4.047	2.491
1906	1.810	1.632
1907	12.936	2.122
1908	9.582	2.381
1909	9.476	2.489
1910	13.064	2.464
1911	8.507	2.212

1912 1913 1914 1915 1916 1917 1918 1920 1921 1922 1923 1924 1925 1926 1927 1928 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1962	28.058 13.445 3.285 5.417 8.414 2.807 9.006 6.658 8.572 9.588 9.616 7.729 3.532 4.383 8.163 5.295 6.533 13.388 8.604 7.958 6.231 6.010 17.649 8.194 7.122 11.370 6.929 0.433 7.679 3.657 11.566 5.950 10.901 9.636 5.211 3.291 18.133 15.537 4.403 5.417 23.644 21.328 7.696 6.291 3.753 14.106 3.753 14.106 3.753 14.106 3.753 14.181 7.615 3.649	8.998 10.668 1.938 4.604 2.598 1.992 9.744 2.187 6.739 4.509 2.599 2.599 2.584 2.232 2.559 3.669 2.553 2.553 3.669 2.5515 1.902 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.377 2.609 2.512 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 2.599 2.599 3.660 3.660 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.60
1960 1961	3.753 14.181	1.993 8.660
1969	6.943	2.326

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 10

2021 11.697 7.7	322 942 943 944 944 945 945 945 945 945 945
2022 4.842 2.7 2023 9.838 7.6 2024 18.498 2.4 2025 8.685 2.5 2026 14.179 8.6	3.452

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 11

4.415 9.610 17.825 5.890 3.207 5.157 5.074 20.108 10.442 2.496 8.328 0.836 4.629 6.240 19.561 9.447 12.746 8.679 10.167 7.485 9.687 8.659 6.215 9.026 5.191 9.288 11.805 3.658 4.103	1.842 7.584 6.310 2.249 1.892 2.040 2.372 5.638 2.557 1.941 7.200 1.441 2.119 2.082 4.963 8.702 8.623 7.741 8.533 4.450 2.135 2.574 2.148 6.669 3.083 9.567 6.439 1.905 2.129
3.658	1.905
	9.610 17.825 5.890 3.207 5.157 5.074 20.108 10.442 2.496 8.328 0.836 4.629 6.240 19.561 9.447 12.746 8.679 10.167 7.485 9.687 8.659 6.215 9.026 5.191 9.288 11.805 3.658 4.103 6.378 8.075

Ranked Annual Peaks
Ranked Annual Peaks for Predeveloped and Mitigated. POC #1
Rank
Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	28.0580	63.4522
	23.6443	51.5203
3	23.6196	22.4808
4	22.8165	18.3390
5	22.0309	12.2892
6	21.3281	10.6677
7	20.1082	10.5978
8	19.5614	10.5588
2 3 4 5 6 7 8	18.5241	9.9341
10	18.4978	9.7477
11	18.1329	9.7437
12	17.9645	9.5668
13	17.8247	9.5436
14	17.6490	9.3728
15	17.3288	8.9983
16	17.1168	8.7020
17	16.9031	8.6599
18	16.0906	8.6229
19	15.9955	8.5330
20	15.8717	8.3917
21	15.5366	8.3630
22	14.2613	8.0818
	14.2010	0.0010

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 12

2345678901234567890142344567890123456789012345777777777777777777777777777777777777	14.1855 14.1814 14.1791 14.1450 14.1056 13.4450 13.3879 13.0641 12.9897 12.9360 12.7460 11.8050 11.7517 11.6973 11.5663 11.3698 11.2702 11.0982 10.9231 10.9008 10.8716 10.4420 10.3820 10.2317 10.2027 10.1667 9.8379 9.6867 9.6357 9.6158 9.6097 9.5877 9.5815 9.5128 9.4763 9.4467 9.4112 9.4048 9.2876 9.1729 9.0575 9.0263 9.0057 8.9519 8.6849 8.6789	8.0625 8.0498 7.7749 7.7406 7.6845 7.5838 7.2005 7.1897 7.0734 6.9719 6.9423 6.7394 6.6688 6.6041 6.5040 6.4386 6.2633 5.9019 5.6375 5.6368 4.9630 4.6113 4.6043 4.5335 4.4829 4.4496 4.3760 4.3337 4.0196 3.7482 3.6691 3.6018 3.5425 3.1618 3.5425 3.55991 2.55991 2.55995 2.55995 2.55995 2.55495 2.5
74 75	8.5068 8.4538	2.5227

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 13

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	8.1634 8.1284 8.0754 7.9585 7.7292 7.6964 7.6786 7.6570 7.6153 7.1866 7.1216 7.1058 6.9563 6.9425 6.9563 6.9425 6.8292 6.8171 6.6580 6.5335 6.4309 6.2405 6.2405 6.2405 6.2405 6.2405 6.1288 6.0100 5.9503 5.8900 5.7792 5.4174 5.4171 5.2948 5.2567 5.2293 5.2107	2.4891 2.4856 2.4734 2.4642 2.4506 2.4429 2.4386 2.4278 2.4278 2.4278 2.4278 2.3935 2.3903 2.3754 2.3754 2.3754 2.3754 2.3754 2.3754 2.3445 2.3445 2.3445 2.3258 2.321 2.2488 2.2402 2.2316 2.2294 2.2316 2.2498 2.2
116 117 118 119	5.2948 5.2567 5.2407 5.2293	2.1476 2.1467

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 14

139	3.6584	1.9915
140	3.6573	1.9901
141	3.6495	1.9854
142	3.5646	1.9554
143	3.5440	1.9500
144	3.5317	1.9487
145	3.2914	1.9408
146	3.2910	1.9384
147	3.2850	1.9378
148	3.2434	1.9049
149	3.2067	1.9022
150	3.2024	1.8922
151	3.0840	1.8907
152	2.8068	1.8694
153	2.7175	1.8658
154	2.4959	1.8588
155	1.8104	1.8421
156	0.8358	1.6319
157	0.6806	1.5120
158	0.4334	1.4410

Duration Flows
The Facility PASSED

Flow(cfs) 4.2146 4.3719 4.5292 4.6865 4.8438 5.0011 5.1584 5.3158 5.4731 5.6304 5.7877 5.9450 6.1023 6.2596 6.4170 6.5743 6.7316 6.8889 7.0462 7.2035 7.3608 7.5182 7.6755 7.8328 7.9901 8.1474 8.3047 8.4620 8.6193 8.7767 8.9340 9.913 9.2486 9.4059 9.5632 9.7205 9.8779 10.0352 10.1925 10.3498 10.5071 10.6644 10.8217 11.4510 11.6083 11.7656 11.9229	Predev 54298 50171 46564 43312 40271 37451 34913 32570 30315 28265 26432 24786 23285 21928 20637 19412 18282 17219 16149 15141 14271 13446 12659 11939 11235 10559 9972 9374 8842 8332 7856 7457 7030 6615 6271 5978 5701 5447 5199 4958 4709 4515 4338 4163 3962 3770 3577 3421 3268 3135	Mit 54215 48476 42254 36598 31301 26182 24332 23335 22354 21418 20587 19728 18975 18088 16786 15612 14593 13623 12659 11839 11047 9955 8127 7202 6438 5756 5028 4473 4051 3342 3009 2677 2380 2086 1834 1578 1327 1358 621 488 464 453 445 445 445 445 445 445 44	Percentage 99 96 90 84 77 69 69 71 73 75 77 81 82 81 80 79 78 78 77 74 70 68 64 60 57 53 50 48 46 44 42 40 37 34 32 28 25 21 81 11 11 11 11 11 11 11 11 11 11 11 11	Pass/Fail Pass Pass Pass Pass Pass Pass Pass Pas
11.6083	3421	427	12	Pass

12.5522 12.7095 12.8668 13.0241 13.1815 13.3388 13.4961 13.6534 13.8107 13.9680 14.1253 14.2827 14.4400 14.5973 14.7546 14.9119 15.0692 15.2265 15.3838 15.5412 15.6985 15.8558 16.0131 16.1704 16.3277 16.4850 16.6424 16.7997 16.9570	2682 2560 2454 2362 2256 2148 2042 1952 1860 1783 1694 1619 1564 1485 1408 1339 1275 1219 1163 1103 1057 1007 964 919 873 815 774 738 695	363 350 337 327 320 311 303 295 280 268 259 253 246 244 240 236 233 225 215 207 203 197 193 187 185 184 181 179 178	13 13 13 14 14 15 15 15 15 15 16 17 18 18 18 19 20 21 22 23 24 25	Pass Pass Pass Pass Pass Pass Pass Pass
16.9570	738 695	179 178	25	Pass
17.1143 17.2716	637 601	176 174	27 28	Pass Pass
17.4289	558	172	30	Pass
17.5862 17.7436	517 478	171 168	33 35	Pass Pass
17.7430	433	167	38	Pass
18.0582	395	163	41	Pass
18.2155	363	162	44	Pass
18.3728 18.5301	339 310	159 157	46 50	Pass Pass
18.6874	297	154	51	Pass
18.8448	273	154	56	Pass
19.0021	252	153	60	Pass
19.1594	237	153	64	Pass
19.3167 19.4740	224 206	150 148	66 71	Pass Pass
19.4740	194	146	75 75	Pass
19.7886	180	145	80	Pass

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 17

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

WWHM - 19' Riser 5/2/2022 8:10:15 AM Page 18

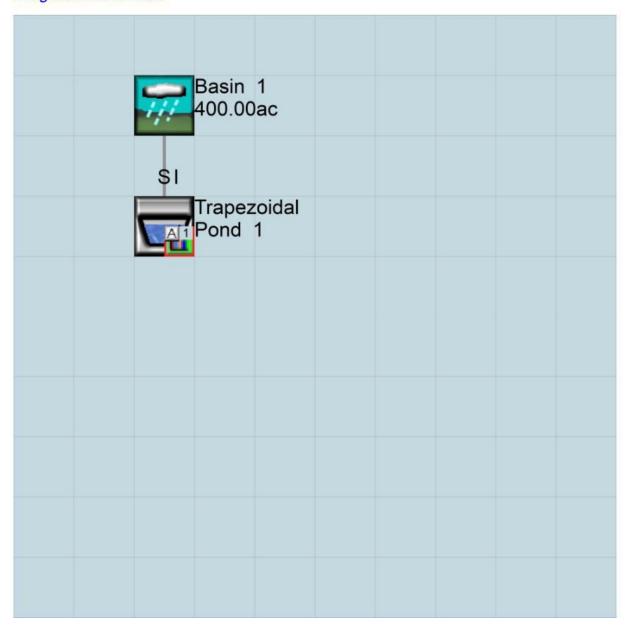
LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		134275.69				0.00			
Total Volume Infiltrated		134275.69	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes
No PERLND changes have been made.


IMPLND Changes
No IMPLND changes have been made.

WWHM - 19' Riser 5/2/2022 8:10:38 AM Page 20

Appendix Predeveloped Schematic

Basin 1 400.00ac	

Mitigated Schematic

Predeveloped UCI File

```
RUN
GLOBAL
 WWHM4 model simulation
 START 1901 10 01
                           END
                                 2059 09 30
 RUN INTERP OUTPUT LEVEL
                       3 0
 RESUME 0 RUN 1
                                      UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
             WWHM - 19' Riser.wdm
WDM
          26
              PreWWHM - 19' Riser.MES
          25
MESSU
          27 PreWWHM - 19' Riser.L61
          28 PreWWHM - 19' Riser.L62
30 POCWWHM - 19' Riser1.dat
END FILES
OPN SEQUENCE TNGRP
                    INDELT 00:15
              501
     COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
  # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Basin 1 MAX 1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
  TIMESERIES
 # - # NPT NMN ***
1 1 1
501 1 1
  END TIMESERIES
END COPY
GENER
 OPCODE
   # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
  GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                             User t-series Engl Metr ***
                             in out
1 1 1 1 27 0
  10 C, Forest, Flat
  END GEN-INFO
  *** Section PWATER***
   <PLS > ******* Active Sections *******************
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
  PRINT-INFO
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
0 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
   END PWAT-PARM1
 PWAT-PARM2
  PWA1-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR

10 0 4.5 0.08 400 0.05
                                               SLSUR KVARY
                                                        KVARY AGWRC 0.5 0.996
 END PWAT-PARM2
 PWAT-PARM3
   <PLS > PWATER input info: Part 3
   # - # ***PETMAX PETMIN INFEXP
0 0 0 2
                                      INFILD DEEPFR BASETP AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
         ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS GWVS 0 0 0 0 2.5 1 0
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><-----> Unit-systems Printer ***
           User t-series Engl Metr ***
                                 in out
 END GEN-INFO
  *** Section IWATER***
 # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
  <ILS > ****** Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
# - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
           IWATER input info: Part 3 ***
  <PLS > IWATER input in # - # ***PETMAX PETMIN
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS
 END IWAT-STATE1
```

```
END IMPLND
SCHEMATIC
                   <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tb1# ***
<-Source->
<Name> #
Basin 1***
PERLND 10
                         400 COPY 501 12
400 COPY 501 13
PERLND 10
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-> <-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-> <-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                        ***
  # - #<----- User T-series Engl Metr LKFG
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
  # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR KS DB50 ***
 <----><----><---->
 END HYDR-PARM2
 HYDR-INIT
  RCHRES Initial conditions for each HYDR section
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

WDM		1	EVAP	ENGL		1		PERLND	1	999	EXTNI	PE	TINP	
WDM		1	EVAP	ENGL		1		IMPLND	1	999	EXTNI	L PE	TINP	
END	EXT S	SOU	JRCES											
	TARGE													
<-VC	olume-	->	<-Grp>	<-Membe	er.	-><	-Mult>Trar	<-Volu	me->	<me< td=""><td>mber></td><td>Tsys</td><td>Tgap</td><td>Amd **</td></me<>	mber>	Tsys	Tgap	Amd **
<nan< td=""><td>ne></td><td>#</td><td></td><td><name></name></td><td>#</td><td>#<-f</td><td>factor->stro</td><td><name></name></td><td>#</td><td><na< td=""><td>me></td><td>tem</td><td>strg</td><td>strg**</td></na<></td></nan<>	ne>	#		<name></name>	#	#<-f	factor->stro	<name></name>	#	<na< td=""><td>me></td><td>tem</td><td>strg</td><td>strg**</td></na<>	me>	tem	strg	strg**
COPY	EXT T	100	OUTPUT RGETS	MEAN	1	1	48.4	MDM	501	FLO	M	ENGL		REPL
MASS	S-LINE	7												
<vol< td=""><td>Lume></td><td></td><td><-Grp></td><td><-Membe</td><td>er-</td><td>-><</td><td>-Mult></td><td><targe< td=""><td>t></td><td></td><td><-Gr</td><td>o> <-</td><td>Membe</td><td>r->**</td></targe<></td></vol<>	Lume>		<-Grp>	<-Membe	er-	-><	-Mult>	<targe< td=""><td>t></td><td></td><td><-Gr</td><td>o> <-</td><td>Membe</td><td>r->**</td></targe<>	t>		<-Gr	o> <-	Membe	r->**
<nam MA</nam 	ne> ASS-LI	NE		<name></name>	#	#<-f	actor->	<name></name>				<n< td=""><td>ame></td><td># #***</td></n<>	ame>	# #***
PERI	LND		PWATER	SURO		0.	083333	COPY			INPUT	r ME	AN	
EN	ID MAS	SS-	LINK	12										

MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13

END MASS-LINK

END RUN

Mitigated UCI File

```
RUN
GLOBAL
 WWHM4 model simulation
         1901 10 01
                        END
                             2059 09 30
 START
 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                  UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
            WWHM - 19' Riser.wdm
WDM
         26
            MitWWHM - 19' Riser.MES
        25
MESSU
            MitWWHM - 19' Riser.L61
         27
           MitWWHM - 19' Riser.L62
POCWWHM - 19' Riser1.dat
         28
        30
END FILES
OPN SEQUENCE
  INGRP
                  INDELT 00:15
            16
    PERLND
    IMPLND
    IMPLND
             14
             1
    RCHRES
    COPY
    COPY
             501
    DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
 # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Trapezoidal Pond 1 MAY
        Trapezoidal Pond 1 MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
             K ***
      #
  #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                            User t-series Engl Metr ***
                                 in out
  16 C, Lawn, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
16 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
```

```
0 4 0 0 0 0 0
 END PRINT-INFO
 PWAT-PARM1
  END PWAT-PARM1
 PWAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY

16 0 4.5 0.03 400 0.05 0.5
                                                                        AGWRC
                                                                        0.996
 END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3

# - # ***PETMAX PETMIN INFEXP

16 0 0 2
                                          INFILD DEEPFR BASETP
 END PWAT-PARM3
 PWAT-PARM4
  <PLS >
              PWATER input info: Part 4
                                          INTFW IRC LZETP ***
6 0.5 0.25
  # - # CEPSC UZSN NSUR
16 0.1 0.25 0.25
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1
                                                                         GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----> Unit-systems Printer ***
                             User t-series Engl Metr ***
                                 in out
1 1 1 27 0
1 1 1 27 0
  1 ROADS/FLAT
14 POND
                                1
 END GEN-INFO
  *** Section IWATER***
  <PLS > ******* Active Sections ****************
  # - # ATMP SNOW IWAT SLD IWG IQAL
1 0 0 1 0 0 0
14 0 0 1 0 0
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL ********

1  0  0  4  0  0  0  1  9

14  0  0  4  0  0  0  1  9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
  1 0 0 0 0 0
14 0 0 0 0 0
 END IWAT-PARM1
 TWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
```

```
1 400 0.01 0.1 0.1
14 400 0.01 0.1 0.1
 END IWAT-PARM2
 IWAT-PARM3
          IWATER input info: Part 3 ***
  <PLS >
  # - # ***PETMAX PETMIN
1 0 0
14 0 0
  14
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS SURS
      0
                   0
              0
                     0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                    <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
PERLND 16
                        57.741 RCHRES
57.741 RCHRES
327.199 RCHRES
15.06 RCHRES
                                       1
PERLND 16
                                       1
IMPLND
      1
                       327.199
IMPLND 14
                        15.06
                                 RCHRES
******Routing*****
                               COPY 1 12
COPY 1 15
COPY 1 15
COPY 1 13
                        57.741
PERLND 16
                        327.199
IMPLND
IMPLND
                         15.06
      14
PERLND 16
RCHRES 1
                        57.741
                                 COPY
                                      501
END SCHEMATIC
<-Volume-> <-Grp> <-Member-><-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                           ***
  # - #<----> User T-series Engl Metr LKFG in out
                                                           ***
  1 Trapezoidal Pond-007 1 1 1 1 28 0 1
 END GEN-INFO
 *** Section RCHRES***
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
1 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ********* PIVL PYR
   END PRINT-INFO
 HYDR-PARM1
```

```
RCHRES Flags for each HYDR Section
     # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
                1
  END HYDR-PARM1
  HYDR-PARM2
    # - # FTABNO LEN DELTH STCOR
                                                                                KS DB50
   1 0.15 0.0 0.0 0.5 0.0
  END HYDR-PARM2
  HYDR-INIT
     RCHRES Initial conditions for each HYDR section
    <---->
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  FTABLE
91 4
Depth Area Volume
(ft) (acres) (acre-ft)
- 06198 0.000000
                               Volume Outflow1 Velocity Travel Time***
(acre-ft) (cfs) (ft/sec) (Minutes)***
  (ft) (acres) (acre-ft) (cfs) 0.000000 15.06198 0.000000 0.000000
  0.222222 15.11161 3.352622 0.319810 0.444444 15.16132 6.716281 0.452280

    0.444444
    15.16132
    0.710261

    0.666667
    15.21111
    10.09100
    0.553928

    0.888889
    15.26098
    13.47678
    0.639621

    1.111111
    15.31094
    16.87366
    0.715118

  1.333333 15.36097
                              20.28165 0.783372
  1.555556 15.41109 23.70077 0.846139
1.777778 15.46129 27.13104 0.904560
   2.000000 15.51157
                              30.57247 0.959431
  2.222222 15.56193
2.444444 15.61238
                              34.02508 1.011329
37.48889 1.060691
   2.666667 15.66290
                              40.96392 1.107855
  2.888889 15.71351
3.111111 15.76420
                              44.45019 1.153093
47.94771 1.196621
   3.333333 15.81497
                              51.45651 1.238620
  3.555556 15.86582
3.777778 15.91675
                              54.97659 1.279241
58.50799 1.318612
   4.000000 15.96777
                              62.05072 1.356840
  4.222222 16.01887
4.444444 16.07004
4.666667 16.12130
                              65.60479 1.394021
69.17022 1.430235
                              72.74704 1.465555
  4.888889 16.17265
5.111111 16.22407
                              76.33525 1.500043
79.93489 1.533756
   5.333333 16.27557
                              83.54596 1.566744
  5.555556 16.32716 87.16849 1.599052
5.777778 16.37883 90.80249 1.630719
6.000000 16.43058 94.44797 1.661783
  6.222222 16.48241 98.10497 1.692277
6.444444 16.53432 101.7735 1.722231
6.666667 16.58632 105.4536 1.751673
  6.888889 16.63839 109.1452 1.780629
7.111111 16.69055 112.8484 1.809120
7.333333 16.74279 116.5632 1.837170
  7.555556 16.79511 120.2897 1.864799
7.77778 16.84752 124.0277 1.892023
8.000000 16.90000 127.7775 1.918862
  8.222222 16.95257 131.5389 1.945330
8.444444 17.00521 135.3119 1.971443
8.666667 17.05794 139.0967 1.997215
8.888889 17.11075 142.8933 2.022658
9.111111 17.16365 146.7015 2.047785
```

```
9.333333 17.21662 150.5216 2.072608

    9.555556
    17.26968
    154.3534
    2.097137

    9.777778
    17.32281
    158.1970
    2.121382

    10.00000
    17.37603
    162.0524
    2.145353

                                    2.169059
  10.22222 17.42933
                         165.9197
                         169.7988
  10.44444
             17.48272
                                    2.192509
             17.53618
                         173.6898 2.215711
  10.66667
  10.88889 17.58973 177.5927 2.238672
                                    2.261400 2.283903
                         181.5074
  11.11111
              17.64335
                         185.4342
  11.33333
             17.69706
  11.55556 17.75085
                         189.3728 2.306185
  11.77778 17.80472
12.00000 17.85868
                         193.3234
197.2860
                                    2.328254 2.350116
  12.22222 17.91271
                         201.2606 2.371777
  12.44444 17.96683
12.66667 18.02103
                                    2.393241
2.414515
                         205.2472
                         209.2459
  12.88889 18.07531
                         213.2566
                                    2.435603
  13.11111 18.12967
13.33333 18.18411
                                    2.456510 2.477240
                         217.2794
                         221.3142
  13.55556 18.23864
                         225.3612 2.497798
  13.77778 18.29325
14.00000 18.34793
                                    2.518189
2.538416
  13.77778
                         229.4203
                         233.4916
  14.22222 18.40270
                         237.5750
                                    2.558483
                         241.6705
245.7783
                                    2.578393
2.598151
  14.44444 18.45756
  14.66667
             18.51249
  14.88889 18.56750
                         249.8983 2.617760
                         254.0306 3.411188
258.1750 3.997090
  15.11111
             18.62260
             18.67778
                         258.1750
  15.33333
  15.55556
             18.73304
                         262.3318
                                    4.406362
  15.77778 18.78838
16.00000 18.84380
                                    4.742487
5.035573
                         266.5008
                         270.6822
  16.22222 18.89931
                         274.8759 6.223662
                         279.0819 6.848770
283.3003 7.368041
  16.44444 18.95489
  16.66667
             19.01056
                                    7.827682
  16.88889 19.06631
                         287.5311
                                    8.246646
  17.11111 19.12214
17.33333 19.17805
                         291.7742
                         296.0298
                                    8.635184
                                    8.999679
  17.55556
            19.23405
                         300.2978
  17.77778 19.29012
18.00000 19.34628
                         304.5783
                                    9.344471
9.672685
                         308.8712
  18.22222
            19.40252
                         313.1766
                                    9.986672
                         317.4945
                                    10.28826
10.57890
  18.44444 19.45884
  18.66667
             19.51524
                         321.8250
  18.88889 19.57173
                         326.1680
                                    10.85978
            19.62829
19.68494
                                    14.27664
27.71800
  19.11111
                         330.5236
  19.33333
                         334.8917
  19.55556
            19.74167
                         339.2724
                                    46.71642
  19.77778 19.79848
20.00000 19.85537
                         343.6658 69.80399
                         348.0718 96.08547
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name>
        # <Name> # tem strg<-factor->strg <Name> # #
                                                                            <Name> # #
                                                                                         ***
                                                             1 999 EXTNL
          2 PREC
                       ENGL 1
                                                  PERLND
                                                                           PREC
                                                           1 999 EXTNL PREC
          2 PREC
                       ENGL
                                1
                                                  TMPIND
MDM
WDM
          1 EVAP
                       ENGL
                                1
                                                  PERLND
                                                            1 999 EXTNL
                                                                           PETINP
                                                           1 999 EXTNL
          1 EVAP
                       ENGL
                               1
                                                  IMPLND
                                                                           PETINP
WDM
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
               <Name> # #<-factor->strg <Name> # <Name>
                                                                          tem strg strg***
<Name> #
                                                  WDM 1000 FLOW
                                                                                     REPL
RCHRES
         1 HYDR
                    RO 1 1 1
                                                                         ENGL
         1 HYDR STAGE 1 1
1 OUTPUT MEAN 1 1
                                                  WDM
                                                         1001 STAG
                                                                         ENGL
RCHRES
                                          1
                                                                                     REPL
COPY 1 OUTPUT MEAN 1 1 48.4
COPY 501 OUTPUT MEAN 1 1 48.4
                                                          701 FLOW
                                                  WDM
                                                                         ENGI.
                                                                                     REPI.
                                                  WDM
                                                          801 FLOW
                                                                         ENGL
                                                                                     REPL
END EXT TARGETS
```

MASS-LINK						
<volume></volume>	<-Grp>	<-Member-	> <mult></mult>	<target></target>	<-Grp>	<-Member->**
<name></name>		<name> #</name>	#<-factor->	<name></name>		<name> # #***</name>
MASS-LIN	K	2				
PERLND	PWATER	SURO	0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	2				
MASS-LIN		3				
PERLND			0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	3				
MASS-LIN		5				
IMPLND	IWATER		0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	5				
MASS-LIN	K	12				
T. 1997 T. 1997 S. 199	PWATER	27.0 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	12				
MASS-LIN	7.24	13				
PERLND		0.0000000000000000000000000000000000000	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	13				
MASS-LIN		15		name and a	-	
IMPLND	IWATER		0.083333	COPY	INPUT	MEAN
END MASS	-LINK	15				
MASS-LIN	TO SECURITION AND THE PARTY OF	16				
RCHRES	ROFLOW			COPY	INPUT	MEAN
END MASS	-LINK	16				

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

WWHM - 19' Riser 5/2/2022 8:10:39 AM Page 35

Appendix B – WWHM Report – Pre-Expanded Pond – Theoretical Basin – 85% Impervious – 19' Riser

WWHM2012 PROJECT REPORT

General Model Information

Project Name: WWHM - 19' Riser

Site Name: Site Address:

City:

Report Date: 6/8/2022

Gage: 38 IN CENTRAL

 Data Start:
 10/01/1901

 Data End:
 09/30/2059

 Timestep:
 15 Minute

 Precip Scale:
 1.000

Version Date: 2021/08/19

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 440

Pervious Total 440

Impervious Land Use acre

Impervious Total 0

Basin Total 440

Element Flows To:

Surface Interflow Groundwater

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Lawn, Flat 66

Pervious Total 66

Impervious Land Use ROADS FLAT POND acre 356.13 17.87

Impervious Total 374

Basin Total 440

Element Flows To:

Interflow Groundwater

Surface Trapezoidal Pond 1 Trapezoidal Pond 1

Routing Elements Predeveloped Routing

Mitigated Routing

Trapezoidal Pond 1

Bottom Length: Bottom Width: 870.00 ft. 895.00 ft. Depth:

20 ft. 387.9373 acre-feet. Volume at riser head:

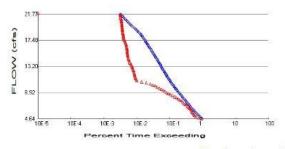
Side slope 1:
Side slope 2:
Side slope 3:
Side slope 4:
Discharge Structure
Riser Height:
Riser Diameter:
Orifice 1 Diameter:
Orifice 2 Diameter: 3 To 1 3 To 1 3 To 1 3 To 1

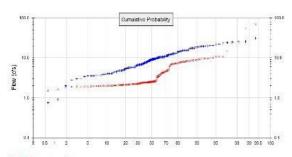
19 ft. 96 in.

5.000 in. Elevation:0 ft. Orifice 2 Diameter: 9.250 in. Elevation:15 ft. Orifice 3 Diameter: 8.500 in. Elevation:16 ft.

Element Flows To:

Outlet 1 Outlet 2


Pond Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)		
0.0000	17.87	0.000	0.000	0.000
0.2222	17.92	3.978	0.319	0.000
0.4444	17.98	7.968	0.452	0.000
0.6667	18.03	11.97	0.553	0.000
0.8889	18.09	15.98	0.639	0.000
1.1111	18.14	20.01	0.715	0.000
1.3333	18.20	24.05	0.783	0.000
1.5556	18.25	28.10	0.846	0.000
1.7778	18.31	32.16	0.904	0.000
2.0000	18.36	36.23	0.959	0.000
2.2222	18.42	40.32	1.011	0.000
2.4444	18.47	44.42	1.060	0.000
2.6667	18.53	48.53	1.107	0.000
2.8889	18.58	52.66	1.153	0.000
3.1111	18.64	56.79	1.196	0.000
3.3333	18.69	60.94	1.238	0.000
3.5556	18.75	65.10	1.279	0.000
3.7778	18.80	69.27	1.318	0.000
4.0000	18.86	73.46	1.356	0.000
4.2222	18.91	77.66	1.394	0.000
4.4444	18.97	81.87	1.430	0.000
4.6667	19.02	86.09	1.465	0.000
4.8889	19.08	90.32	1.500	0.000
5.1111	19.14	94.57	1.533	0.000
5.3333	19.19	98.83	1.566	0.000
5.5556	19.25	103.1	1.599	0.000
5.7778	19.30	107.3	1.630	0.000
6.0000	19.36	111.6	1.661	0.000
6.2222	19.42	116.0	1.692	0.000
6.4444	19.47	120.3	1.722	0.000
6.6667	19.53	124.6	1.751	0.000
6.8889	19.58	129.0	1.780	0.000
7.1111	19.64	133.3	1.809	0.000

7.3333 7.5556 7.7778 8.0000 8.2222 8.4444 8.6667 8.8889 9.1111 9.3333 9.5556 9.7778 10.000 10.222 10.444 10.667 10.889 11.111 11.333 11.556 11.778 12.000 12.222 12.444 12.667 12.889 13.111 13.333 13.556 13.778 14.000 14.222 14.444 14.667 14.889 15.111 15.333 15.556 15.778 16.000 16.222 16.444 17.333 17.556 17.778 18.000 18.222 18.444 18.667 19.889	19.70 19.75 19.81 19.87 19.93 19.98 20.04 20.10 20.15 20.27 20.33 20.38 20.44 20.50 20.62 20.67 20.73 20.85 20.97 21.08 21.14 21.20 21.38 21.44 21.50 21.55 21.61 21.73 21.79 21.85 21.79 21.85 21.91 22.09 22.15 22.33 22.39 22.45 22.76	137.7 142.1 146.5 150.9 155.3 159.7 164.2 168.6 173.1 186.6 191.1 195.7 200.8 209.4 214.0 218.6 223.8 237.1 241.8 246.4 251.1 255.8 260.6 265.3 270.0 274.8 294.0 298.8 303.6 308.5 313.3 318.2 329.4 318.2 318.3	1.837 1.864 1.892 1.918 1.945 1.997 2.022 2.047 2.072 2.097 2.121 2.145 2.192 2.215 2.283 2.306 2.328 2.350 2.371 2.445 2.456 2.477 2.518 2.558 2.578 2.558 2.578 2.578 2.598 2.617 3.411 3.997 4.406 4.742 5.035 6.848 7.827 8.635 8.999 9.344 9.672 9.986 10.257 10.86	0.000 0.000
18.222 18.444	22.51 22.58 22.64	362.7 367.7 372.7	9.672 9.986 10.28	0.000 0.000

20.222 23.13 413.4 124.8 0.000

Analysis Results

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 440
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 66 Total Impervious Area: 374

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 9.272029

 5 year
 14.424557

 10 year
 17.224231

 25 year
 20.0738

 50 year
 21.767508

 100 year
 23.160231

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 3.263326

 5 year
 6.163982

 10 year
 9.151445

 25 year
 14.660962

 50 year
 20.446224

 100 year
 28.114016

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigate
1902	6.800	2.405
1903	5.656	2.082
1904	9.251	2.351
1905	4.452	2.478
1906	1.991	1.619
1907	14.230	2.162
1908	10.540	2.436
1909	10.424	2.482
1910	14.371	2.495
1911	9.358	2.247

1912 1913 1914 1915 1916 1917 1918 1920 1921 1922 1923 1924 1925 1926 1927 1930 1931 1932 1933 1934 1935 1938 1939 1940 1941 1942 1943 1944 1945 1948 1949 1950 1951 1953 1955 1953 1955 1955 1955 1958 1960 1961 1962 1963 1964 1965 1966 1967 1968	30.864 14.790 3.613 5.959 9.2567 9.2567 9.906 7.324 9.429 10.547 10.577 8.502 3.885 4.821 8.980 5.824 7.187 14.727 9.464 8.754 6.611 19.414 9.013 7.622 0.477 8.446 4.023 12.723 6.545 11.991 10.599 5.732 3.621 19.946 17.090 4.843 5.959 23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 9.23.461 8.950 8.392 12.015 8.377 4.417 17.459 4.895 7.652	9.258 10.749 1.982 4.569 4.188 1.994 2.213 2.446 2.2213.434 2.608 2.2213.434 2.608 2.608 2.608 2.613 2
1969	7.637	2.330

1970 1971 1972 1973 1974 1975 1976 1977 1978 1980 1981 1982 1983 1984 1985 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023 2024 2025 2026	11.959 18.829 12.208 15.560 8.423 19.761 10.464 3.523 17.595 4.826 9.963 9.539 3.898 15.604 6.357 10.345 9.279 17.700 11.223 10.090 11.420 8.941 12.788 12.397 7.816 9.299 0.749 7.074 3.620 12.927 11.255 10.352 19.062 5.765 5.782 9.847 6.758 5.752 4.847 6.758 5.752 4.849 6.758 5.752 19.867 5.263 3.921 7.512 2.989 14.289 25.982 24.234 7.905 15.597	2.347 7.472 4.609 7.217 2.545 9.691 5.110 2.011 10.819 4.750 3.554 2.122 2.068 2.509 7.690 3.456 2.413 7.572 2.415 2.450 1.916 2.504 1.903 2.422 3.733 6.779 2.415 2.423 2.377 1.945 2.162 2.162 1.945 2.162
2026	15.597	8.426
2027	5.605	2.239

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2056	4.857 10.571 19.607 6.479 3.527 5.672 5.581 22.119 11.486 2.745 9.160 0.919 5.091 6.865 21.518 10.391 14.021 9.547 11.183 8.233 10.655 9.525 6.837 9.929 5.710 10.216 12.986 4.024 4.513	1.874 7.763 7.306 2.304 1.926 2.105 2.394 4.682 2.877 1.993 7.384 1.421 2.132 2.106 4.413 8.855 9.089 8.373 7.976 4.416 2.140 2.584 2.121 7.152 4.460 9.365 6.961 1.922 2.144

Ranked Annual Peaks
Ranked Annual Peaks for Predeveloped and Mitigated. POC #1
Rank
Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	30.8638	68.2888
	26.0087	54.8440
3	25.9816	24.9695
4	25.0981	24.1301
5	24.2340	14.5623
6	23.4609	10.8155
7	22.1190	10.7490
8	21.5176	10.6557
2 3 4 5 6 7 8 9	20.3765	10.0297
10	20.3476	9.9441
11	19.9462	9.7219
12	19.7610	9.7199
13	19.6072	9.6913
14	19.4140	9.3651
15	19.0616	9.2582
16	18.8285	9.0891
17	18.5934	8.8546
18	17.6997	8.7959
19	17.5950	8.6878
20	17.4589	8.4865
21	17.0903	8.4263
22	15.6874	8.3733
See See	10.001	0.0700

234 227 227 239 230 230 230 230 230 230 230 230 230 230	15.6040 15.5995 15.5971 15.5596 15.5161 14.7895 14.7267 14.3705 14.2887 14.2296 14.0206 12.9855 12.9269 12.8671 12.7878 12.7229 12.5067 12.3972 12.2080 12.0154 11.9909 11.9588 11.4202 11.2548 11.2230 11.1833 10.8217 10.6554 10.5773 10.5707 10.5465 10.5993 10.5773 10.5707 10.54641 10.4239 10.3914 10.3523 10.3452 10.2164 10.0901 9.9538 9.95395 9.9538 9.5354 9.5358 9.2598 9.2598 9.2598 9.2508 9	8.3674 8.2401 8.0387 8.0205 7.9758 7.8394 7.7634 7.6903 7.5720 7.4716 7.3836 7.3057 7.2175 7.1519 7.0938 6.9662 6.9614 6.8151 6.7789 6.1880 5.7589 5.1095 4.8715 4.7503 4.6821 4.6094 4.5686 4.4603 4.4162 4.4134 4.2348 4.2073 4.1879 4.1421 3.9304 3.8489 3.7879 3.7331 3.5543 3.4558 3.4336 3.4127 3.2633 2.6059 2.6059 2.5050 2.5299 2.5299 2.5299 2.5299
80	9.0133	2.5090

81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 103 104 105 107 108 110 111 113 114 115 116 117 118 119 119 119 119 119 119 119 119 119	8.9797 8.9413 8.8829 8.7543 8.84266 8.44657 8.3768 8.2332 7.8338 7.6519 7.6368 7.6221 7.4988 7.3238 7.1868 7.0740 7.0153 6.8540 6.8540 6.87997 6.75417 6.6110 6.8547 6.3571 5.9588 5.7648 5.7648 5.7659 5.765	2.5042 2.4952 2.4825 2.4779 2.4663 2.4570 2.4528 2.4509 2.4497 2.4480 2.4435 2.4412 2.4406 2.4364 2.4283 2.4219 2.4154 2.4146 2.4128 2.3295 2.3184 2.3295 2.3184 2.32960 2.2811 2.2672 2.2471 2.2392 2.2212 2.2111 2.2047 2.1995 2.1745 2.1624 2.1567 2.1441 2.1398 2.12960 2.2111 2.2047 2.1995 2.1745 2.1624 2.1567 2.1441 2.1398 2.12960 2.2112 2.2111 2.2047 2.1995 2.1745 2.1624 2.1567 2.1441 2.1398 2.12960 2.2112 2.2121 2.215 2.1624 2.1567 2.1441 2.1398 2.1398 2.12960 2.12960 2.2112 2.2113 2.12047 2.1398
129 130	4.8954 4.8569	2.1207

139	4.0242	2.0107
140	4.0230	2.0063
141	4.0144	1.9987
142	3.9211	1.9944
143	3.8984	1.9925
144	3.8849	1.9817
145	3.6205	1.9622
146	3.6201	1.9598
147	3.6135	1.9490
148	3.5678	1.9448
149	3.5273	1.9281
150	3.5227	1.9260
151	3.3924	1.9219
152	3.0875	1.9164
153	2.9893	1.9033
154	2.7455	1.8736
155	1.9915	1.8674
156	0.9194	1.6191
157	0.7487	1.5026
158	0.4767	1.4212

Duration Flows The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
4.6360	54276	50935	93	Pass
4.8091	50160	42941	85	Pass
4.9821	46564	35074	75	Pass
5.1552	43312	31966	73	Pass
5.3282	40260	30376	75	Pass
5.5012	37451	28980	77	Pass
5.6743	34908	27673	79	Pass
5.8473	32559	26493	81	Pass
6.0204	30321	25335	83	Pass
6.1934	28265	24249	85	Pass
6.3665	26432	22642	85	Pass
6.5395	24786	21008	84	Pass
6.7126	23285	19462	83	Pass
6.8856	21928	17845	81	Pass
7.0586	20637	16260	78	Pass
7.2317	19418	14786	76	Pass
7.4047	18282	13557	74	Pass
7.5778	17219	12443	72	Pass
7.7508	16155	11174	69	Pass
7.9239	15141	10039	66	Pass
8.0969	14271	8980	62	Pass
8.2700	13451	7917	58	Pass
8.4430	12659	6764	53	Pass
8.6161	11933	5823	48	Pass
8.7891	11235	5082	45	Pass
8.9621	10559	4497	42	Pass
9.1352	9967	4003	40	Pass
9.3082	9374	3520	37	Pass
9.4813	8842	3118	35	Pass
9.6543	8332	2705	32	Pass
9.8274	7856	2332	29	Pass
10.0004	7457	2040	27	Pass
10.1735	7036	1745	24	Pass
10.3465	6626	1448	21	Pass
10.5196	6282	1091	17	Pass
10.6926	5978	791	13	Pass
10.8656	5712	564	9	Pass
11.0387	5450	545	10	Pass
11.2117	5198	526	10	Pass
11.3848	4950	512	10	Pass
11.5578	4709	500	10	Pass
11.7309	4511	489	10	Pass
11.9039	4339	481	11	Pass
12.0770	4160	472	11	Pass
12.2500	3956	463	11	Pass
12.4231	3770	452	11	Pass
12.5961	3586	442	12	Pass
12.7691	3421	430	12	Pass
12.9422	3265	421	12	Pass
13.1152	3135	411	13	Pass
13.2883	3029	399	13	Pass
13.4613	2927	387	13	Pass
13.6344	2815	369	13	Pass

13.8074 13.9805 14.1535 14.3266 14.4996 14.6726 14.8457 15.0187 15.1918 15.3648 15.5379 15.7109 15.8840 16.0570 16.2301 16.4031 16.5761 16.7492 16.9222 17.0953 17.2683 17.4414	2685 2555 2454 2363 2259 2142 2041 1953 1860 1779 1695 1619 1561 1485 1407 1340 1275 1219 1163 1104 1057 1006	347 338 329 318 311 305 303 298 295 294 289 287 284 283 280 274 272 268 264 255 250 238	12 13 13 13 14 14 15 15 16 17 17 18 19 20 21 21 22 23 23	Pass Pass Pass Pass Pass Pass Pass Pass
17.9605	872	221	25	Pass
18.1336	815	218	26	Pass
18.3066	776	217	27	Pass
18.4796	738	215	29	Pass
18.6527	694	212	30	Pass
18.8257	637	209	32	Pass
18.9988 19.1718 19.3449	602 553 517 478	209 207 204	34 37 39 42	Pass Pass Pass
19.5179 19.6910 19.8640 20.0371	476 433 394 363	202 202 199 197	46 50 54	Pass Pass Pass Pass
20.2101	339	195	57	Pass
20.3831	310	194	62	Pass
20.5562	297	192	64	Pass
20.7292	273	192	70	Pass
20.9023	252	190	75	Pass
21.0753	237	186	78	Pass
21.2484	224	182	81	Pass
21.4214	206	180	87	Pass
21.5945	195	178	91	Pass
21.7675	180	176	97	Pass

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1 POC		141133.54				0.00			
Total Volume Infiltrated		141133.54	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

Model Default Modifications

Total of 0 changes have been made.


PERLND Changes
No PERLND changes have been made.

IMPLND Changes
No IMPLND changes have been made.

Appendix Predeveloped Schematic

Basin 1 440.00ac	

Mitigated Schematic

Predeveloped UCI File

```
RUN
GLOBAL
 WWHM4 model simulation
 START 1901 10 01
                           END
                                 2059 09 30
 RUN INTERP OUTPUT LEVEL
                       3 0
 RESUME 0 RUN 1
                                      UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
             WWHM - 19' Riser.wdm
WDM
          26
              PreWWHM - 19' Riser.MES
          25
MESSU
          27 PreWWHM - 19' Riser.L61
          28 PreWWHM - 19' Riser.L62
30 POCWWHM - 19' Riser1.dat
END FILES
OPN SEQUENCE TNGRP
                    INDELT 00:15
              501
     COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
  # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Basin 1 MAX 1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
  TIMESERIES
 # - # NPT NMN ***
1 1 1
501 1 1
  END TIMESERIES
END COPY
GENER
 OPCODE
   # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
  GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                             User t-series Engl Metr ***
                             in out
1 1 1 1 27 0
  10 C, Forest, Flat
  END GEN-INFO
  *** Section PWATER***
   <PLS > ******* Active Sections *******************
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
  PRINT-INFO
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
0 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
   END PWAT-PARM1
 PWAT-PARM2
  PWA1-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR

10 0 4.5 0.08 400 0.05
                                               SLSUR KVARY
                                                        KVARY AGWRC 0.5 0.996
 END PWAT-PARM2
 PWAT-PARM3
   <PLS > PWATER input info: Part 3
   # - # ***PETMAX PETMIN INFEXP
0 0 0 2
                                      INFILD DEEPFR BASETP AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
         ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS GWVS 0 0 0 0 2.5 1 0
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><-----> Unit-systems Printer ***
           User t-series Engl Metr ***
                                 in out
 END GEN-INFO
  *** Section IWATER***
 # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
  <ILS > ****** Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
# - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
           IWATER input info: Part 3 ***
  <PLS > IWATER input in # - # ***PETMAX PETMIN
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS
 END IWAT-STATE1
```

```
END IMPLND
SCHEMATIC
                   <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
PERLND 10
                         440 COPY 501 12
440 COPY 501 13
PERLND 10
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-> <-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-> <-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                        ***
  # - #<----- User T-series Engl Metr LKFG
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******* Print-flags ******** PIVL PYR
  # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR KS DB50 ***
 <----><----><---->
 END HYDR-PARM2
 HYDR-INIT
  RCHRES Initial conditions for each HYDR section
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

WDM 1 EVAP	ENGL 1 ENGL 1	PERLND 1 IMPLND 1	999 EXTNL 999 EXTNL	PETINP PETINP
END EXT SOURCES				
EXT TARGETS <-Volume-> <-Grp> <name> # COPY 501 OUTPUT END EXT TARGETS</name>		r->strg <name> #</name>	<name></name>	
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<-Member-><-Mult <name> # #<-facto 12 SURO 0.0833 12</name>	r-> <namé></namé>	<-Grp>	<pre>> <-Member->***</pre>

MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13

END MASS-LINK

END RUN

Mitigated UCI File

```
RUN
GLOBAL
 WWHM4 model simulation
         1901 10 01
                        END
                             2059 09 30
 START
 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                  UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <----->***
<-ID->
            WWHM - 19' Riser.wdm
WDM
         26
            MitWWHM - 19' Riser.MES
        25
MESSU
            MitWWHM - 19' Riser.L61
         27
           MitWWHM - 19' Riser.L62
POCWWHM - 19' Riser1.dat
         28
        30
END FILES
OPN SEQUENCE
  INGRP
                  INDELT 00:15
            16
    PERLND
    IMPLND
    IMPLND
             14
             1
    RCHRES
    COPY
    COPY
             501
    DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
 # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Trapezoidal Pond 1 MAY
        Trapezoidal Pond 1 MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
             K ***
      #
  #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                            User t-series Engl Metr ***
                                 in out
  16 C, Lawn, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
16 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
```

```
0 4 0 0 0 0 0
 END PRINT-INFO
 PWAT-PARM1
  END PWAT-PARM1
 PWAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY

16 0 4.5 0.03 400 0.05 0.5
                                                                        AGWRC
                                                                        0.996
 END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3

# - # ***PETMAX PETMIN INFEXP

16 0 0 2
                                          INFILD DEEPFR BASETP
 END PWAT-PARM3
 PWAT-PARM4
  <PLS >
              PWATER input info: Part 4
                                          INTFW IRC LZETP ***
6 0.5 0.25
  # - # CEPSC UZSN NSUR
16 0.1 0.25 0.25
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1
                                                                         GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><-----> Unit-systems Printer ***
                             User t-series Engl Metr ***
                                 in out
1 1 1 27 0
1 1 1 27 0
  1 ROADS/FLAT
14 POND
                                1
 END GEN-INFO
  *** Section IWATER***
  <PLS > ******* Active Sections ****************
  # - # ATMP SNOW IWAT SLD IWG IQAL
1 0 0 1 0 0 0
14 0 0 1 0 0
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL ********

1  0  0  4  0  0  0  1  9

14  0  0  4  0  0  0  1  9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
  1 0 0 0 0 0
14 0 0 0 0 0
 END IWAT-PARM1
 TWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
```

```
1 400 0.01 0.1 0.1
14 400 0.01 0.1 0.1
 END IWAT-PARM2
 IWAT-PARM3
          IWATER input info: Part 3 ***
  <PLS >
  # - # ***PETMAX PETMIN
1 0 0
14 0 0
  14
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS SURS
      0
                  0
              0
                    0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                   <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
PERLND 16
                          66
                               RCHRES
                         66
                                     1
PERLND 16
                               RCHRES
                       356.13
                                     1
IMPLND
      1
                               RCHRES
IMPLND 14
                        17.87
                               RCHRES
******Routing*****
                              COPY 1 12
COPY 1 15
COPY 1 15
COPY 1 13
                        66
PERLND 16
                       356.13
IMPLND
IMPLND
                        17.87
     14
PERLND 16
                        66
RCHRES 1
                               COPY
                                     501
END SCHEMATIC
<-Volume-> <-Grp> <-Member-><-Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                        ***
  # - #<----> User T-series Engl Metr LKFG in out
                                                        ***
  1 Trapezoidal Pond-007 1 1 1 1 28 0 1
 END GEN-INFO
 *** Section RCHRES***
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
1 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ********* PIVL PYR
  END PRINT-INFO
 HYDR-PARM1
```

```
RCHRES Flags for each HYDR Section
    # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
               1
  END HYDR-PARM1
  HYDR-PARM2
    # - # FTABNO LEN DELTH STCOR
                                                                           KS DB50
  1 0.16 0.0 0.0 0.5 0.0
  END HYDR-PARM2
  HYDR-INIT
    RCHRES Initial conditions for each HYDR section
    <---->
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  PTABLE
91 4
Depth Area Volume
(ft) (acres) (acre-ft)
- 97534 0.000000
                            Volume Outflow1 Velocity Travel Time***
(acre-ft) (cfs) (ft/sec) (Minutes)***
  0.000000 17.87534 0.000000 0.000000
  0.222222 17.92941 3.978306 0.319810
0.444444 17.98356 7.968636 0.452280
  0.666667 18.03779 11.97101 0.553928
0.888889 18.09210 15.98544 0.639621
1.111111 18.14649 20.01195 0.715118
  1.333333 18.20096
                            24.05055 0.783372
  1.555556 18.25552
1.777778 18.31016
                            2.000000 18.36488 36.23913 0.959431
  2.22222 18.41968 40.32630 1.011329
2.444444 18.47456 44.42566 1.060691
  2.666667 18.52952
                            48.53723 1.107855
  2.888889 18.58457 52.66102 1.153093
3.111111 18.63969 56.79705 1.196621
  3.333333 18.69490 60.94533 1.238620
  3.555556 18.75019 65.10590 1.279241
3.777778 18.80557 69.27876 1.318612
  4.000000 18.86102
                            73.46394 1.356840

    4.222222
    18.91655
    77.66145
    1.394021

    4.444444
    18.97217
    81.87131
    1.430235

    4.666667
    19.02787
    86.09353
    1.465555

  4.888889 19.08365 90.32815 1.500043
5.111111 19.13951 94.57516 1.533756
                            98.83460 1.566744
   5.333333 19.19545
  5.555556 19.25148 103.1065 1.599052
5.777778 19.30759 107.3908 1.630719
6.000000 19.36377 111.6876 1.661783
  6.222222 19.42004 115.9970 1.692277
6.444444 19.47640 120.3188 1.722231
6.666667 19.53283 124.6531 1.751673
  6.888889 19.58934 129.0000 1.780629
7.111111 19.64594 133.3595 1.809120
                            133.3595
  7.333333 19.70262 137.7316 1.837170
  7.555556 19.75938 142.1163 1.864799
7.777778 19.81622 146.5135 1.892023
8.000000 19.87314 150.9235 1.918862
  8.222222 19.93014 155.3461 1.945330
8.444444 19.98723 159.7813 1.971443
8.666667 20.04440 164.2293 1.997215
8.888889 20.10165 168.6900 2.022658
9.111111 20.15898 173.1634 2.047785
```

```
9.333333 20.21639 177.6495 2.072608
  9.555556 20.27389 182.1484 2.097137
                                 2.121382
2.145353
  9.777778
            20.33146
                       186.6601
  10.00000
            20.38912
                       191.1846
                       195.7220 2.169059
  10.22222
            20.44686
                                 2.192509
2.215711
                       200.2721
  10.44444
            20.50468
  10.66667
            20.56258
                       204.8352
  10.88889 20.62056
                       209.4111
                                 2.238672
                       213,9999
                                 2.261400
  11.11111
            20.67863
                                 2.283903
                       218.6016
  11.33333
            20.73678
  11.55556
           20.79501
                       223.2162
                                 2.306185
  11.77778 20.85332
12.00000 20.91171
                                 2.328254 2.350116
                       227.8438
                       232.4844
  12.22222 20.97018 237.1379 2.371777 12.44444 21.02874 241.8045 2.393241 12.66667 21.08737 246.4840 2.414515
  12.88889 21.14609
                       251.1766
                                 2.435603
                                 2.456510 2.477240
  13.11111
            21.20489
                       255.8823
           21.26377
                       260.6010
  13.33333
  13.55556
           21.32274
                       265.3329
                                 2.497798
                                 2.518189
  13.77778
            21.38178
                       270.0778
  14.00000
            21.44091
                       274.8359
                                 2.538416
  14.22222 21.50012
                       279.6071
                                 2.558483
                                 2.578393
2.598151
  14.44444 21.55941
                       284.3915
  14.66667
            21.61878
                       289.1891
  14.88889 21.67823
                       293.9999
                                 2.617760
            21.73777
                                 3.411188
3.997090
  15.11111
                       298.8239
                       303.6611
            21.79738
  15.33333
  15.55556
            21.85708
                       308.5116
                                 4.406362
                                 4.742487
5.035573
  15.77778
            21.91686
                       313.3754
                       318.2525
  16.00000 21.97672
  16.22222
           22.03666
                       323.1428
                                 6.223662
  16.44444 22.09669
                       328.0465
                                 6.848770
7.368041
                       332.9636
  16.66667
            22.15680
                                 7.827682
  16.88889 22.21698
                       337.8940
                       342.8378
347.7950
                                 8.246646
  17.11111 22.27725
            22.33760
  17.33333
                                 8.635184
                                 8.999679
  17.55556
           22.39804
                       352.7656
           22.45855
  17.77778
                       357.7497
                                 9.344471
  18.00000
            22.51915
                       362.7472
                                  9.672685
  18.22222
            22.57982
                       367.7582
                                 9.986672
                       372.7827
377.8207
            22.64058
                                 10.28826
  18.44444
  18.66667
            22.70142
                                  10.57890
  18.88889 22.76235
                       382.8722
                                 10.85978
            22,82335
                                 14.27664
27.71800
  19.11111
                       387.9373
  19.33333
            22.88444
                       393.0160
  19.55556
            22.94560
                       398.1082
                                 46.71642
  19.77778
  19.77778 23.00685
20.00000 23.06818
                       403.2140
                                 69.80399
                       408.3335 96.08547
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name>
         # <Name> # tem strg<-factor->strg <Name> # #
                                                                      <Name> # #
                                                                                  ***
                                                        1 999 EXTNL
         2 PREC
                     ENGL
                             1
                                              PERLND
                                                                     PREC
MDM
                                                        1 999 EXTNL
         2 PREC
                     ENGT.
                                              TMPT-ND
                                                                     PREC
MDM
                              1
WDM
         1 EVAP
                     ENGL
                              1
                                              PERLND
                                                       1 999 EXTNL
                                                                     PETINE
                             1
WDM
         1 EVAP
                     ENGL
                                              IMPLND
                                                       1 999 EXTNL
                                                                     PETINP
         1 EVAP
                                                              EXTNL POTEV
MOM
                     ENGL
                             1
                                              RCHRES
                                                       1
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name>
                  <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
                          1 1 1
1 1 1
                                              WDM
                                                    1000 FLOW
RCHRES
         1 HYDR
                   RO
                                                                    ENGL
                   STAGE 1 1
                                                    1001 STAG
RCHRES
         1 HYDR
                                              WDM
                                                                   ENGI.
                                                                              REPI.
       1 OUTPUT MEAN 1 1 48.4
501 OUTPUT MEAN 1 1 48.4
COPY
                                              WDM
                                                     701 FLOW
                                                                   ENGL
                                                                              REPL
COPY
                                              WDM
                                                      801 FLOW
                                                                   ENGL
                                                                              REPL
```

END EXT TARGETS

MASS-LINK						
<volume></volume>	<-Grp>	<-Member-	-> <mult></mult>	<target></target>	<-Grp>	<-Member->**
<name></name>		<name> #</name>	#<-factor->	<name></name>		<name> # #***</name>
MASS-LIN	K	2				
PERLND	PWATER	100000	0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	2				
MASS-LIN		3				
PERLND	PWATER		0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	3				
MASS-LIN	Tation	5	nar renavara e san			
IMPLND	IWATER		0.083333	RCHRES	INFLOW	IVOL
END MASS	-LINK	5				
MASS-LIN	K	12				
PERLND	AND THE RESERVE THE RESERVE TO SERVE THE RESERVE THE R	SURO	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	12				
MASS-LIN		13				
PERLND	PWATER		0.083333	COPY	INPUT	MEAN
END MASS	-LINK	13				
MASS-LIN		15				
IMPLND	IWATER	77.47.20 to to t	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	15				
MASS-LIN	TENERSON STREET	16				
RCHRES	ROFLOW			COPY	INPUT	MEAN
END MASS	-LINK	16				

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com